8 research outputs found

    Synchronization-free radchat for automotive radar interference mitigation

    Get PDF
    Automotive radar interference mitigation is expected to be inherent in all future ADAS and AD vehicles. Joint radar communications is a candidate technology for removing this interference by coordinating radar sensing through communication. Coordination of radars requires strict time synchronization among vehicles, and our formerly proposed protocol (RadChat) achieves this by a precise absolute time, provided by GPS clocks of vehicles. However, interference might appear if synchronization among vehicles is lost in case GPS is spoofed, satellites are blocked over short intervals, or GPS is restarted/updated. Here we present a synchronization-free version of RadChat (Sync-free RadChat), which relies on using the relative time for radar coordination, eliminating the dependency on the absolute time provided by GPS. Simulation results obtained for various use cases show that Sync-free RadChat is able to mitigate interference without degrading the radar performance

    Comparison of Automotive FMCW and OFDM Radar Under Interference

    Get PDF
    Automotive radars are subject to interference in spectrally congested environments. To mitigate this interference, various waveforms have been proposed. We compare two waveforms (FMCW and OFDM) in terms of their radar performance and robustness to interference, under similar parameter settings. Our results indicate that under proper windowing both waveforms can achieve similar performance, but OFDM is more sensitive to interference

    Radar Interference Mitigation for Automated Driving: Exploring Proactive Strategies

    Get PDF
    Autonomous driving relies on a variety of sensors, especially on radars, which have unique robustness under heavy rain/fog/snow and poor light conditions. With the rapid increase of the amount of radars used on modern vehicles, where most radars operate in the same frequency band, the risk of radar interference becomes a compelling issue. This article analyses automotive radar interference and proposes several new approaches, which combine industrial and academic expertise, toward the path of interference-free autonomous driving

    Radar Interference Mitigation through Active Coordination

    No full text
    Intelligent transportation is heavily reliant on radar, which have unique robustness under heavy rain/fog/snow and poor light conditions. With the rapid increase of the number of radars used on modern vehicles, most operating in the same frequency band, the risk of radar interference becomes an important issue. As in radio communication, interference can be mitigated through coordination. We present and evaluate two approaches for radar interference coordination, one for FMCW and one for OFDM, and highlight their challenges and opportunities

    Experimental Validation of Single Base Station 5G mm Wave Positioning: Initial Findings

    No full text
    5G cellular networks can utilize millimeter wave signals, and support large bandwidths and large antenna arrays, which provide more geometric-based signals and higher delay and angle resolutions. These merits bring new opportunities in positioning the user with limited infrastructure through the use of combined angle and delay information. However, there are many practical challenges to overcome, in order to have a functioning single base station 5G mmWave positioning system. In this paper, we describe a deployed single base station mmWave positioning system, and provide an example of the measurement data. Furthermore, we perform measurement validation on a limited measurement data set by performing base station localization. Additional evaluations performed on simulation model data provide guidelines on the required size of the data set and receiver antenna configuration, which will be implemented in upcoming measurements
    corecore